Essential mappings and transfinite dimension
نویسندگان
چکیده
منابع مشابه
The Transfinite Hausdorff Dimension
Making an extensive use of small transfinite topological dimension trind, we ascribe to every metric space X an ordinal number (or −1 or Ω) tHD(X), and we call it the transfinite Hausdorff dimension of X. This ordinal number shares many common features with Hausdorff dimension. It is monotone with respect to subspaces, it is invariant under bi-Lipschitz maps (but in general not under homeomorph...
متن کاملComplex Transfinite Barycentric Mappings with Similarity Kernels
Transfinite barycentric kernels are the continuous version of traditional barycentric coordinates and are used to define interpolants of values given on a smooth planar contour. When the data is two-dimensional, i.e. the boundary of a planar map, these kernels may be conveniently expressed using complex number algebra, simplifying much of the notation and results. In this paper we develop some ...
متن کاملTransfinite mean value interpolation in general dimension
Mean value interpolation is a simple, fast, linearly precise method of smoothly interpolating a function given on the boundary of a domain. For planar domains, several properties of the interpolant were established in a recent paper by Dyken and the second author, including: sufficient conditions on the boundary to guarantee interpolation for continuous data; a formula for the normal derivative...
متن کاملOn ( transfinite ) small inductive dimension of products ∗
In this paper we study the behavior of the (transfinite) small inductive dimension (trind) ind on finite products of topological spaces. In particular we essentially improve Toulmin’s estimation [T] of trind for Cartesian products.
متن کاملOn Transfinite Extension of Asymptotic Dimension
We prove that a transfinite extension of asymptotic dimension asind is trivial. We introduce a transfinite extension of asymptotic dimension asdim and give an example of metric proper space which has transfinite infinite dimension. 0. Asymptotic dimension asdim of a metric space was defined by Gromov for studying asymptotic invariants of discrete groups [1]. This dimension can be considered as ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Fundamenta Mathematicae
سال: 1985
ISSN: 0016-2736,1730-6329
DOI: 10.4064/fm-125-1-41-45